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Abstract

A number of formal models, including a highly influential model of group prob-
lem solving from Hong and Page (2004), purport to show that diverse groups
are often better at solving problems than more homogeneous groups of individu-
ally high-performing agents. A natural way to explain the advantage of diverse
groups is in terms of their ability to bring more skills, methods of problem solving,
background knowledge, perspectives, etc. to the problem than the homogeneous
groups. Thompson (2014) argues that in Hong and Page’s model, it’s actually the
fact that the diverse groups are created by a random process that explains their
success, not the diversity itself. Here I defend the diversity interpretation of the
Hong and Page result, and in doing so, I undercut the concerns created by Thomp-
son’s article about institutional, educational, and legal policies that appeal to the
epistemic benefits of diverse groups. What the failure of Thompson’s argument
shows, I argue, is that in order to understand the value of functionally diverse
groups, we must be clearer about how we conceive of and measure functional
diversity.

Recent research in social epistemology, epistemic democracy, and the social struc-
ture of science has lead to a number of formal models of group problem solving that
expound the epistemic virtues of diverse groups. The most prominent example of
this is a model from Hong and Page (2004), which purports to show that functionally
diverse groups of non-experts can be (and often are) more effective than homogeneous
groups of experts at solving difficult problems. Hong and Page defend this by showing
that groups of randomly-selected individuals often beat groups of the individually
best performing agents in finding the peaks of random landscapes. Other notable
proponents of the epistemic virtues of diversity include Thoma (2015), who argues
that mixed groups of ‘explorer’ and ‘extractor’ scientists explore more of a epistemic
landscape than either kind of agent alone,1 and Zollman (2010), who shows that het-
erogeneous groups can do better by allowing more hypotheses to be considered before
a group converges.2

Results like these have had significant impacts on discussions about not only
functionally diverse groups but also identity diverse groups. The Hong and Page

∗I’m very thankful to Scott E. Page, William (Zev) Berger, Meredith Tamminga, and two anonymous
reviewers for comments on an earlier draft of this paper.

1Thoma’s model is a modification of a model originally presented by Weisberg and Muldoon (2009),
who also purport to defend a pro-diversity result. As Thoma argues though, it’s not clear that Weisberg
and Muldoon successfully defend their claim.

2For an important critique of Zollman, see Rosenstock et al. (2017).

1 of 13



SINGER DIVERSITY, NOT RANDOMNESS, TRUMPS ABILITY

result alone has been cited over 3,000 times, appealed to by Landemore (2012) to argue
for inclusiveness in deliberative democratic institutions, taken by philosophers of
science to demonstrate the epistemic value of diversity in science (e.g. Bright 2017,
Martini 2014, Stegenga 2016), cited in support of a diversity requirement by UCLA
(2014), and included in a brief to the Supreme Court of the United States supporting
promoting diversity in the armed forces (Fisher v. University of Texas, Austin 2016).

If the pro-diversity results are right though, what explains the success of function-
ally diverse groups? There isn’t a universally-accepted answer to this question, but
many assume that diverse groups’ ability to bring more skills, methods of problem
solving, background knowledge, perspectives, etc. to the table must be at least part
of the explanation. But, Abigail Thompson (2014) argues that Hong and Page’s result
cannot be understood that way. What explains the diverse groups’ success is that they
are created by a random selection process: it’s the randomness, not the diversity, that
explains the result, she argues. Thompson’s arguments have been taken by many to
undermine the arguments that appeal to the Hong and Page result, most notably by
Brennan (2017, p. 182), who worries that Thompson’s result may expose a fatal flaw in
Landemore’s (2012) defense of democracy.

Here I’ll argue that Thompson was mistaken and that the Hong and Page result is
explained by diversity, not by randomness. Much of my argument involves a technical
exploration of the Hong and Page model and Thompson’s critique of it.3 There’s a
general lesson in the failure of Thompson’s critique though: in order to understand the
value of functionally diverse groups, we must be clearer about how we conceive of and
measure functional diversity. Moreover, by defending an interpretation of the Hong
and Page result in terms of diversity, I undercut the concerns created by Thompson’s
article about the institutional, educational, and legal policies that were created by
appeal to Hong and Page’s result. I don’t provide a general conception or measure of
functional diversity in arguing for my claims here, but my argument will showcase
some methods and tools that can be used towards that end in future work.4

1 The “Diversity Trumps Ability” Result and Thompson’s Randomness Interpretation

Hong and Page’s (2004) “Diversity Trumps Ability” result shows that on sufficiently
hard problems “a randomly selected collection of problem solvers outperforms a
collection of the best individual problem solvers” (2007, p. 162). They show this

3Kuehn (2017) also canvasses some of the ways proponents of the diversity result can defend them-
selves while accepting most of Thompson’s technical claims (though perhaps saying that they don’t apply
to the Hong and Page result). Here I argue more directly against Thompson.

4Hong and Page are careful to distinguish functional from identity diversity in their discussion.
Identity diversity is differences in demographic characteristics, cultural identities, ethnicity, etc., whereas
functional diversity is differences in “how people represent problems and how they go about solving
them” (2004, p. 16385). I’ll restrict the discussion of diversity here to issues of functional diversity. Many
have taken the virtues of functionally diverse groups to have implications for the virtues of identity
diverse groups, but those arguments aren’t the focus of this discussion.
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both by proving a general mathematical theorem about agents using different search
methods and by computational model. Here I’ll focus on the model.

In the model, groups of agents work their way around a ring of 2000 spots, which
I’ll call the ‘landscape’. We can think of the different spots in the landscape as being
different candidate answers to the question the group is trying to answer. At any given
moment, the entire group inhabits a single spot. They can move forward on the ring,
and once they reach the end, they loop back to the beginning. Each of the 2000 spots
on the ring has a score associated with it. We can think of the score of a spot as being
the epistemic payoff of accepting that answer (i.e. a measure of how good the answer
is). In Hong and Page’s model, each of the spots is randomly assigned a real-number
score between 0 and 100.5

Each agent has a heuristic that they use to move around the ring. A heuristic consists
of an ordered non-repeating list of three integers {h1, h2, h3}. Agents use their heuristic
in the following way: from wherever they are on the ring, they ask themselves if the
spot h1 spots ahead has a higher score than their current spot. If so, they move, and if
not, they stay. They then try the next number in their heuristic, and repeat the process
(looping back to h1 after trying h3) until no number in their heuristic takes them to a
spot with a higher score. From every starting spot on the ring, there is a unique ending
spot the agent will get to from any starting spot. An agent’s competence will be the
average score the agent receives starting from any spot.

A group of agents will be an ordered list of agents {a1, a2, . . . ai}. Groups of agents
move around a ring similarly to individual agents. From any given starting spot, the
first agent uses their heuristic to take the group to the highest spot they can from the
starting spot. The baton is then passed to the second agent who leads the group from
there using their own heuristic. The baton is passed around the group (looping back to
a1 after ai) until no agent can take the group any higher. A group’s competence will be
the average score the group receives starting from any spot.

What the “Diversity Trumps Ability” result says is that groups of agents with ran-
domly selected distinct heuristics (“random groups”) typically outperform groups of
agents with the individually-highest-performing distinct heuristics (“expert groups”).6

In my recreation of the model, with three heuristic numbers that range from 1 to 20, 10
agents in each group, and averaged over 1000 runs, expert groups have an average
competence of 93.79 (standard error = 0.041) whereas random groups have an aver-
age competence of 96.07 (standard error = 0.016). So the random groups performed
significantly better (Welch t-test, p < 2.2 ∗ 10−16).7

Hong and Page explain this result in terms of the random groups being more
functionally diverse than the expert groups. To precisify this, Hong and Page provide

5For generalizations of this model and implications for the results, see Grim et al. (2017).
6Hong and Page are careful to use the term ‘best-performing agents’ rather than ‘experts.’ The

difference is irrelevant here, but see Grim et al. (2017) for a careful discussion.
7Of course, since these data come from simulations, each of the results reported here can be extended

to be as statistically significant as is needed.
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a measure of functional diversity: Let’s say that two heuristics overlap in a spot when
they share the same number in that spot in the heuristic. For example, {1, 2, 3} and
{1, 4, 5} overlap in only the first spot. {1, 2, 3} and {4, 5, 6} do not overlap in any spots.
Let δHP(h1, h2) be the percent of places that the two heuristics h1 and h2 do not overlap.
Then,

HP-DIVERSITY The HP-diversity of a group of agents is the average of all δHP(hi, hj)
where hi and hj are heuristics in the group, and i 6= j.

HP-diversity essentially measures the lack of overlap of heuristics of members in the
group: the higher the HP-diversity, the less overlap there is among the heuristics.

As Hong and Page show, on average, the HP-diversity between expert groups
and random groups differs in the same way their average competence differs. Expert
groups have an average HP-diversity of 87.19% (standard error = 0.0006) whereas
random groups have an average HP-diversity of 95.08% (standard error = 0.0014).
Hong and Page conclude then that random groups do better because of their higher
diversity. More diverse groups bring more skills to the table (here represented as
bringing more non-overlapping heuristics), which explains why “diversity trumps
ability” (2004, p. 16385).

2 Thompson’s Critique and Randomness Interpretation

Thompson (2014) presents a number of worries for Hong and Page’s original paper.
Chief among them is the worry that diversity can’t explain why random groups outper-
form expert groups. Hong and Page draw their conclusion that diversity explains the
performance of random groups by showing that the HP-diversity of random groups
is higher than that of expert groups. But a mere correlation of these values isn’t a
strong enough reason to conclude that there is an explanatory connection, Thompson
argues (2014, p. 1028). If it’s diversity that is doing the work, then maximally diverse
groups should be expected to perform well in general. But, in Thompson’s recon-
struction of the model, she reports that five distinct groups that were each maximally
HP-diverse all performed worse than the median performance of 200 random groups.
She concludes that it can’t be diversity that’s doing the work (2014, p. 1028).

What does Thompson think is going on in the model then? Thompson thinks the
success of random groups is best seen as an instance of a well-established theme in
algorithms research that random algorithms outperform the best known deterministic
algorithms in many situations (2014, p. 1028). As she points out, it’s widely accepted
that “randomization can improve algorithms, and often can improve them dramat-
ically” (2014, p. 1028). Since the diverse groups are created by a random process in
Hong and Page’s model, the natural explanation, Thompson suggests, is that the model
is best understood as showing that “randomness trumps ability,” not that “diversity
trumps ability.”
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3 The Implausibility of Thompson’s Critique

The bulk of this section will be an argument against Thompson’s reason for thinking
that maximally diverse groups don’t perform well compared to random groups. But
note that even if she were right about that, we should still be concerned about the
plausibility of the randomness interpretation. Here’s why:

Randomized algorithms differ from deterministic (and non-deterministic) algo-
rithms in that randomized algorithms operate on a series of random bits in addition to
a regular fixed input. This means that the same random algorithm can give different
outputs on the same fixed input. As Thompson notes, randomized algorithms have
received much praise in complexity research. The purported advantages of these
algorithms are their simplicity (understood in terms of humans’ ability to grasp and
implement them) and their efficiency over known deterministic algorithms.8

But, since the issue here is about performance rather than simplicity, we should only
think the randomness-based explanation of the Hong and Page result is compelling
if random algorithms are thought to have performance benefits over deterministic
algorithms in general, not just benefits over known deterministic algorithms. Otherwise,
Hong and Page could just as easily be right that some fixed property of the randomly-
generated groups, like their diversity, is what explains their success, not the fact that
they were randomly-generated. It is not among the generally accepted benefits of
random algorithms that the randomness itself explains their success though.

The question of whether random algorithms are computationally more powerful
than deterministic algorithms is often studied in terms of whether the complexity
class of bounded-error probabilistic polynomial time algorithms (BPP) is reducible
to the class of polynomial time algorithms (P). That question is still an open one
(Greathouse 2013). (For a relevant survey, see Vadhan 2012.) But, current research into
derandomization shows that many particular random algorithms can be reduced to
deterministic algorithms using techniques like the methods of conditional expectations,
pessimistic estimators, and bounded independence. Research on the complexity classes
involving random algorithms also shows that many subclasses of random algorithms
in BPP can be reduced to deterministic algorithms. In light of those results, most
complexity researchers believe that the randomness of random algorithms is not
essential to their performance (i.e. that P = BPP) (Aaronson 2017, conjucture 31). So,
even if Thompson is correct that HP-diversity doesn’t explain the success of random
groups, we shouldn’t think randomness explains it either. We should look for another
property of the random groups that can explain their success.

So what is the property that explains why random groups perform better? Thomp-
son argued that diversity can’t be that property because maximally HP-diverse don’t

8In a seminal paper on this topic, Karp (1991, p. 166), for example, says that random algorithms have
two kinds of benefits: “First, often the execution time or space requirement of a randomized algorithm
is smaller than that of the best deterministic algorithm that we know of for the same problem. But even
more strikingly, if we look at the various randomized algorithms that have been invented, we find that
invariably they are extremely simple to understand and to implement” (emphasis added).
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perform well compared to random groups. I’ll show that Thompson was mistaken in
asserting that though: maximally HP-diverse groups do typically outperform random
groups, and there is a natural explanation of why Thompson thought otherwise.

In arguing that maximally HP-diverse groups don’t perform well compared to
random groups, Thompson reported testing 5 maximally HP-diverse groups against
the median performance of 200 random groups.9 She found that all of them performed
worse than the median of the random groups. My reconstruction of the result further
confirms that the groups Thompson tested were in fact very weak compared to ran-
dom groups. Testing Thompson’s groups against 100 random groups on each of 100
landscapes shows that Thompson’s groups lose to random groups 93.62% of the time.

So if Thompson’s selected groups were representative of maximally HP-diverse
groups, it would be reasonable to conclude that maximally HP-diverse groups don’t
perform better than random groups. But, that’s not the result we see. In 1 million runs
of randomly generated groups on random landscapes, the average competence of all
groups was 96.04 (standard error = 0.0005, n = 1,000,000). The average competence of
groups with maximal HP-diversity was 96.33 (standard error = 0.0278, n = 261). So
maximally HP-diverse groups, on average, do perform better than random groups
(Welch Two Sample t-test, p < 2.2 ∗ 10−16).10 Moreover, when we look at all of the
runs, we can see a clear correlation between HP-diversity and competence. Figure 1
shows a scatterplot of HP-diversity and group competence for 50,000 runs that are
representative of a 1 million run sample.

We can see from figure 1 that HP-diversity is correlated with competence (Pearson
correlation = 0.224, 99.99% CI [0.220, 0.228]), pace Thompson (2014). Moreover, though
it’s not clear in the scatterplot, there are maximally HP-diverse groups that perform
markedly better than random groups, like this one:

Super−MaxHP Group = [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ,
[ 1 0 , 1 1 , 1 2 ] , [ 1 3 , 1 4 , 1 5 ] , [ 1 6 , 1 7 , 1 8 ] ,
[ 1 9 , 2 0 , 1 ] , [ 2 , 4 , 8 ] , [ 6 , 1 0 , 1 4 ] , [ 1 2 , 1 6 , 2 0 ]

The Super-MaxHP Group almost never loses to random groups. On 100,000 random
landscapes, facing a new random group on each, the Super-MaxHP Group lost only 42
times. Moreover, when it won, it won by 0.897 on average (standard deviation = 0.364),
but when it lost, it only lost by 0.041 (standard deviation = 0.038). So the Super-MaxHP
is the polar opposite of what Thompson’s maximally HP-diverse groups were like.

What happened with Thompson’s groups then? Inspecting an example of one of
Thompson’s groups will be helpful in answering that question. Consider this one
(Thompson 2017):

9Thompson reports that the groups she tested were maximally HP-diverse, though inspection of her
code shows that only 3 of the 5 were, in fact, maximially HP-diverse. Groups 1 and 5 had HP-diversity of
.993 and .970, respectively (Thompson 2017). This was presumably due to typos in the code, but those
don’t affect her overall argument.

10Unless stated otherwise, the results given are for 1 million runs of groups of size 10 with 3 heuristic
numbers, a maximum heuristic of 20, and a ring of length 2000 with real numbered scores in [0,100).
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Figure 1: Comparison of HP-Diversity to Competence for 50,000 runs. Includes linear regression (error
bars too small to be visible). Average score of all random groups marked by dashed line.

Thompson ’ s Group = [ 1 , 2 , 3 ] , [ 2 , 3 , 1 ] , [ 3 , 1 , 2 ] , [ 4 , 5 , 6 ] , [ 5 , 6 , 4 ] ,
[ 6 , 4 , 5 ] , [ 7 , 8 , 9 ] , [ 8 , 9 , 7 ] , [ 9 , 7 , 8 ] , [ 1 0 , 1 1 , 1 2 ]

It’s easy to check that this group is maximally HP-diverse, since no two heuristics have
the same heuristic number in the same location. Is this group really diverse (rather
than just HP-diverse) though? The maximum heuristic number used in these runs was
20, even though the maximum heuristic in Thompson’s group is 12. So forty percent
of the possible heuristic numbers don’t even show up in this group, even though 9
heuristic numbers are each repeated 3 times. Given that, it seems like there’s a sense
in which this group isn’t very diverse at all. HP-diversity doesn’t track this other
sense of diversity, the sense which can be measured by the proportion of the heuristic
numbers are present in the group. I’ll call this sense of diversity ‘coverage diversity,’
since it measures how much of the heuristic space is covered by the group’s combined
heuristics.

C-DIVERSITY The C-diversity of a group of agents is the percentage of the heuristic
numbers that are represented in any spot in any heuristic in the group.

The example group has a C-diversity of 60%, the minimum possible diversity of a
maximally HP-diverse group.

In fact, all of the groups Thompson test have a C-diversity of 60%. C-diversities
that low are very uncommon among maximally HP-diverse groups at these parameters
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though. In a test of 1 million random-generated maximally HP-diverse groups, only
0.0131% had a C-diversity less than 0.7, and none had a C-diversity the same as
Thompson’s (0.6). So it would be incredibly unlikely for Thompson to have selected 5
groups with 0.6 C-diversity at random from the set of maximally HP-diverse groups.
If one were to construct maximally HP-diverse group by hand though, a natural way
to do it would be to avoid overlaps by intentionally repeating the same number in
different places in different heuristics in the group. Doing this will result in a maximally
HP-diverse group that only uses a small percentage of the available heuristic numbers
(since it guarantees repeats of the used numbers). Presumably this is why Thompson’s
maximally HP-diverse groups were so unrepresentative of the whole class.

So, Thompson’s reason for rejecting the diversity interpretation of Hong and Page’s
result is flawed. Maximally HP-diverse group do generally perform better than random
groups. Thompson missed this, I hypothesize, because the groups she presumably
made by hand are unrepresentative of the whole class of maximally HP-diverse groups.

4 It is Diversity, Not Randomness

Once we reject Thompson’s argument for thinking that HP-diversity can’t explain the
random groups’ successes and notice that randomness isn’t a good option either, we’re
back in the dialectical position created by Hong and Page in 2004: HP-diversity is the
presumptive best candidate to explain the success of random groups. But, why think
it’s high HP-diversity rather than some other property of random groups? One mark
in favor of HP-diversity is its correlation with group competence (detailed above), but
might there be another property that can explain the success of random groups?

In fact, C-diversity can explain the success of random groups much better than
HP-diversity. Compare the scatterplot of C-diversity and group competence in figure
2 to the previous plot of HP-diversity and group competence (figure 1). Here again,
the 50,000 runs is representative of a 1 million run sample. In the whole sample, the
Pearson correlation between C-diversity and group competence is 0.553 (99.99% CI
[0.551, 0.554]). Compared to the correlation between HP-diversity and competence (r =
0.224), C-diversity is significantly more correlated with competence (Williams’s test
of dependent correlations, t = 356; Steiger’s z = 341). So knowing the C-diversity of a
group gives us significantly more information about the group’s ability than knowing
the HP-diversity does.

This point is strengthened when we look at the informativeness of HP-diversity
in sets of cases where C-diversity is held constant. Figure 3 shows a collection of
scatterplots. In each plot, the C-diversity of each group is the same and the HP-
diversity of the group is plotted against its competence.

From the definition of HP-diversity, it follows that the HP-diversity of a group is
higher when pairs of heuristics in the group either do not share the same heuristic
numbers or share the same heuristic numbers but in a different order. Since C-diversity
tracks when the heuristics contain more heuristic numbers, changes in HP-diversity
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when C-diversity is held fixed must be explained by changes in the ordering either of
heuristics in the group or heuristic numbers in particular heuristics. As such, we can
see the scatterplots in figure 3 as showing the impact on group competence of a third
kind of diversity, namely diversity of order, or O-diversity.

What Figure 3 shows us is that C-diversity (almost entirely) screens off HP-diversity,
i.e. that when C-diversity is held fixed, HP-diversity gives us very little (if any) new
information about group competence (partial Pearson correlation = 0.0019, p < .05).
From that, we can infer that O-diversity doesn’t track competence — it’s not diversity
in terms of the order of agents or how they use their heuristic numbers that explains
the success of groups.

We can also see the power of C-diversity as an indicator of group competence by
flipping the plots and looking at the correlation between C-diversity and competence
when HP-diversity is held fixed. In figure 4, we see that holding constant HP-diversity,
C-diversity still correlates with group competence almost as much as it did without
holding HP-diversity fixed (partial Pearson correlation = 0.5188, p < 2.2 ∗ 10−16).

Altogether, these data show that C-diversity is a much better indicator of group
competence than HP-diversity. But why? One possibility is that, because the land-
scapes are completely random, groups that have the collective ability to see more of
the spots ahead are less likely to miss a peak. Or perhaps it’s that highly C-diverse
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Figure 2: Comparison of C-Diversity to Competence for 50,000 runs. Includes linear regression (error
bars too small to be visible). Average score of all random groups marked by dashed line.
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Figure 3: Comparison of HP-Diversity to Competence for 2,000 representative runs of each C-diversity in
a 1 million run sample when n ≥ 2000. Includes linear regression (error bars too small to be visible).

groups won’t get stuck in some places that less C-diverse groups would.11 If either of
these were the right description of the mechanism, then it really would be that random
groups bring more heuristics to the problem is what explains their success. Unlike
what Hong and Page thought, order would be completely irrelevant. These stories are
likely missing some details though. If it were only about groups not missing any peaks
or not getting stuck, it would seem that the order of the heuristics in the group should
matter, since an agent without any low-valued heuristics may cause the group to jump
over a nearby peak. So further research into the complex dynamics of the model are
necessary to fully answer this question.

Might there be even better measures of diversity (or other properties) that beat
C-diversity in predicting success in this model? Perhaps a measure that tracks coverage
as well as whether high- and low-valued heuristics are evenly spread-out in the group?
I imagine measures like this would do better, but I won’t attempt to discover those here.
Here the goal was only to show that diversity of some kind is a better explanation of
the success of random groups than randomness. Being more C-diverse means bringing
more skills, methods of problem solving, background knowledge, perspectives, etc. to
the table, and the advantage of random groups can be given a (partial) explanation in
those terms, contra Thompson.

11Since groups only stop in the model once everyone has tried every one of their heuristics, groups that
check more of the points ahead are more likely to find a higher point than groups who check fewer points.
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Figure 4: Comparison of C-Diversity to Competence for 2,000 representative runs for each HP-diversity
in a 1 million run sample when n ≥ 2000. Includes linear regression (error bars too small to be visible).

There’s a broader point to be drawn from this discussion though. The formal
models mentioned above are part of a larger discussion about the epistemic and
practical import of functionally diverse groups and, less directly, identity diverse
groups.12 In this discussion, we often assume that measuring diversity is obvious and
straight-forward. It’s often measured as simply the lack of uniformity. The lesson
is that we undermine our understanding of the issues in employing such anemic
conceptions of functional diversity.13 What we should learn from Thompson’s critique
is that we shouldn’t be so casual about measuring this central notion.

Neither Thoma (2015) nor Zollman (2010) give a measure of diversity in their
discussions, but there are natural candidates that the authors gesture at in both cases.14

When we measure diversity in models like these, we should ask why we think that
we’re measuring an interesting notion of diversity rather than mere difference or non-
uniformity. As I’ve shown in the case of Hong and Page’s model, we have the tools to
understand what counts as diversity that fosters the desired values. So, insomuch as
we aim to justify theory or policy with results from these models, getting clear about
what counts as diversity should be an essential part of the project.

12Exemplars of the broader class include Rubin and O’Connor (2017) and O’Connor and Bruner
(forthcoming).

13I doubt we’re blameworthy here, since we’re at the early stages of using these models.
14For Thoma (2015) (and Weisberg and Muldoon (2009)), it’s the ratio of ‘explorers’ (‘mavericks’) to

‘extractors’ (‘followers’). For Zollman (2010), it’s his maximum permissible α and β parameters.
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